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1 Characteristic Classes
We take the axioms in [MS16] and [Hir66]. Given a —— rank n vector bunlde (ξ, π : E → B) then
the ——- classes are elements

ci(ξ) ∈ Hi(B;G)

The total —– class is again the formal sum

c(ξ) =
∑
i

ci(ξ) ∈ H
∏
(B)

the ——- classes are the unique classes satisfying

1. c0(ξ) = 1

2. (Naturality) Given a bundle map f : E(ξ) → E(ξ′) the classes are ci(ξ) = f̄∗ci(ξ
′). The bar is

the induced map on the base space.

3. (Respects sums) c(ξ ⊕ ξ′) = c(ξ) ^ c(ξ′)

4. (Normalisation) The first —— class of the canonical bundle over CPn is non-trivial (it generates).
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For example for Stieffel-Whitney classes we set G = Z/2Z, real bundles and normalise via the mobius
bundle over the circle. For Chern classes we take Z coefficients for complex bundles and normalize by
a certain bundle over projective space. Chern classes will obviously be zero for complex bundles in
odd degrees, so we reindex them such that ci ∈ H2i. To a real bundle we can associate the complex
bundle given by tensoring the fibers with C . This gives us the definition of the Pontryagin classes

pi(ξ) =
(
− 1

)i
c2i(ξ ⊗ C)

We may also use p̃ which are just the Chern classes of the complexification (no sign adjustment).
Note that Pontryagin classes do not satisfy additivity on the nose they are only additive mod 2,

precisely 2
(
p(ξ ⊕ ξ′)− p(ξ)p(ξ′)

)
= 0. As you can see below they are still natural transformations we

just dont consider the functors to be between semi-groups.
If the bundle is over a compact and oriented smooth manifold without boundary then we have

fundamental class (unique up to a sign), an element of the top degree homology. Given a partition
i1, ..., ir of n the (real) dimension of the manifold, and therefore the rank of the tangent bundle we can
get an integer

ci1(τM ) · · · cir (τM )[M ]

by evaluating the cup product of the —– classes on the fundamental class. The partition ensures that
the product is in the correct degree of cohomology, any such product that lands in the right degree is
valid. These are called the —— numbers, they clearly depend on the given partition.

Remark: The difference between HΠ and H∗ as rings is that HΠ has no finiteness condition, that
is H∗ is the direct sum of the cohomology groups and hence any element in the direct sum will have
only finitely many non-zero components. This is not the case for HΠ. There is no difference for finite
CW complexes.

Remark: A characteristic class in general can be formulated or axiomatise as a natural transforma-
tion in the following way. First we have two functors, one is the cohomology theory and one is the
relevant theory of bundles

Vect− : Topop → Set

H∗ : Topop → GrAbGrp → Set

for instance we can have VectR which assigns to a topological space the set of all its real vector bundles,
other relevant options here would be complex or oriented bundles. Note that this vector bundle functor
sends a continuous map to pulling back by that map. Notice that our functors are contravariant, as
in particular cohomology is contravariant (we could have pushed forward bundles).

A natural transformation is then a family of morphisms for any space B

Vect(B) → H∗(B) ∈ Set

that satisfy the naturality conditions. In particular if we have a morphism of topological spaces
f : N → M , we need the following diagram to commute

Vect(M) Vect(N)

H∗(M) H∗(N)

Vect(f)

c(M) c(N)

H∗(f)

the commutativity of this diagram explicitly says that

f∗c(ξ) = c(f∗ξ)
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this along with the fact that all bundle maps are pullbacks of some map on the base shows that axiom
2 is equivilent to naturality of this transformation.

Axioms 1, 3, 4 do not follow, and require extra conditions on the type of (functor / natural trans-
formation). If we think of Vect as a semigroup (set with associative operation) under Whitney sum
and H∗ as a semi-group under the cup product we get axiom 3 (that is we change the codomain of our
functors to semigroup so the natural transformations must be morphisms of semi-groups). This also
implies that c20 = 1 and so we fix the convention that it is +1.

Finally note that natural transformations require the functors to have the same domain and
codomain, however we really want cohomology to land in graded abelian groups or even rings, this
suggests a need to put the same structures on the set of vector bundles.

2 Key Facts
Here are some key properties

1) The characteristic class of a trivial bundle is 1.

Consider a trivial bundle B × Rn → B then consider the map f̄ : B → ∗. This induces a map
f : B × Rn → ∗ × Rn which is clearly a bundle map, to the trivial bundle over a point. Now apply
natrality of the charactersitic classes we get that

ci(B × Rn) = f̄∗ci(∗ × Rn) ∈ Hi(∗)

and so much be zero for i > 0 and 1 in degree 0.

2) Isomorphic bundles (over the same base) have equal characteristic classes (more preciselly their
characteristic classes map to one another under the given isomorphism).

This is non-trivial as far as I can see. One first needs to prove that these classes exist and are
unique. Given this however it might follow from the fact that isomorphisms induce isomorphisms in
cohomology.

3) Stieffel-Whitney classes commute with (exterior) products:

w(ξ × ξ′) = w(ξ)× w(ξ′)

where the product on the right is the exterior product and on the left is the “Cartesian product”,
wich is a complex construction from pulling back pullbacks. Naively this can just be considered as a
formal product of the cohomology classes, where the coefficients commute but the generators of the
cohomology rings are different formal variables.

4) Chern classes and conjugation are well behaved:

ck(ξ̄) = (−1)kc(ξ)

3 Key Examples
3.1 Sphere
The first easiest example is that of the sphere. We know that for the standard embedding

Sn ↪→ Rn+1

3



the normal bundle is trivial, ε, thus applying the product rule we have that

1 = w(ε) = w(τSn ⊕ ν) = w(τSn)w(ν) = w(τSn).

3.2 Complex Projective Space
This is a complex manifold with a complex tangent bundle. If we compute the Chern classes then we
will know also the Euler class and the Steiffel-Whitney classes.

If we consider the model of CPn as

CPn ..=
{
L ≤ Cn : rank 1 subspaces

}
If we define the bundles

γ ..= {(v, L) : v ∈ L} ⊆ Cn+1 × CPn

γ⊥ ..= {(v, L) : w ∈ L⊥ ⊆ Cn}

with the projection from the second variable. Note that γ is called the cannonical bundle. The tangent
space of CPn has the elegant expression in the form

τ = τCPn = Hom(τ, τ⊥)

where we consider Hom the bundle constructed fiberwise. Intuitively an element of this hom bundle
is a map from the fiber at L which is just L to the normal to L, but L is one dimensional and so this
is just an element of the normal space, i.e. a tangent vector.Actually would like to understand how is
the space of lines topologised and how is that related to the cell structure.

We also know that Hom(γ, γ) ∼= ε that is a trivial bundle, because it has a no-where zero section
given by the identity map at each point (thus it is parrallelizable) and is of dimension 1, each fiber is
the point over which it is fiber, which are by definition rank 1 subspaces. Using that the trivial bundle
has no effect on Chern number we get that

c(τ) = c(τ ⊕ ε)

= c(τ ⊕ Hom(γ, γ))

= c(Hom(γ, γ⊥)⊕ Hom(γ, γ))

= c(Hom(γ, γ ⊕ γ⊥))

But γ ⊕ γ⊥ is a trivial rank n+ 1 bundle and so we get that

c(τ) = c(Hom(γ,C⊕n+1)

= c(Hom(γ,C)⊕n+1)

= c(γ̄⊕n+1)

= c(γ̄)n+1

The n + 1 fold cup product. Thus we get a binomial expansion in terms of the Chern class of this γ
bundle. By our 4th axiom this is a generator of H2(CPn).

Now lets compute some example numbers of these spaces (the general case is in [MS16] but is just
combinatorics from these basic ones), denote α = c1(γ̄), then for example we know that

c(CP 2) = (1 + α)3 = 1 + 3α+ 3α2

noting that the final term α3 from the binomial expansion is in H6(CP 2) = 0. α2 is dual to the
fundamental class of CPn, by convention it is dual on the nose, without a − sign (they are both
generators of the respective rank one modules and are therefore dual). Thus we can compute the
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Chern numbers by considering partitions of 4 by even numbers (Chern classes only in even degrees),
of which there are two 2 + 2 and 4. These corespond to the Chern classes

c21 = (3α)2, c2 = 3α2

which we can evaluate on [CP 2] and use its duality with α2 to get immediately the associated Chern
numbers

9, 3

respectively.
Now CP 1 × CP 1 has Chern class

c(CP 1 × CP 1) = c(CP 1)× (CP 1) = (1 + α)2(1 + β)2 = (1 + 2α)(1 + 2β) = 1 + 2α+ 2β + 4αβ

it is of the same dimension, 4 so we have the same partitions and we can again compute two Chern
numbers. By looking at the degree of cohomology the terms are in we recover which Chern charater
the parts of the sum correspond to and we get

c21 = (2α+ 2β)2 = 4α2 + 8αβ + 4β2 = 8αβ, c2 = 4αβ

the squares of the cohomology classes are zero for dimensional reasons. Now we again have by conven-
tion a duality between αβ and the fundamental class thus the two respective numbers are

8, 4.

Lets go up a dimension and compute Pontryagin classes and numbers. If we didnt go up a couple of
dimensions (4) there would only be one number, not very interesting. Lets do similar examples of the
8 manifolds CP 4 and CP 2 × CP 2. A key fact is that for a complex manifold with a complex tangent
space we have that

τ ⊗ C ∼= τ ⊕ τ̄

thus using the product property and denoting the tangent bundle of CP 4 as τ we get that

p̃(τ) = c(τ)c(τ̄) = (1+α)5(1−α)5 = (1−α2)5 = 1− 5α2 +10α4 − 10α6 +5α8 −α10 = 1− 5α2 +10α4

where the higher terms are zero for dimension reasons. In otherwords

p(τ) = 1 + 5α2 + 10α4

We need partitions of 8 that are in degrees 4 and 8 of which there are again (essentially the same) thus
we have the two classes of interest

p21 = 25α4, p2 = 10α4

which gives the numbers 25, 10.
For CP 2 × CP 2 we have the Pontryagin class of the tangent space given by

p̃(τ) = p̃(τCP 2)×p̃(τCP 2) = (1+α)3(1−α)3(1+β)3(1−β)3 = (1−3α2)(1−3β2) = 1−3(α2+β2)+9α2β2

Again in other words we have that

p(τ) = 1 + 3(α2 + β2) + 9α2β2

The two classes are then

p21 = 9(α2 + β2)2 = 9(α4 + 2α2β2 + β4) = 18α2β2, p2 = 9α2β2

thus the numbers are 18, 9 respectively.
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CP 2 CP 1 × CP 1

c21 9 8
c2 3 4

CP 4 CP 2 × CP 2

p21 25 9
p2 10 1

4 The Cobordism Ring
If we denote Ωn the collection of smooth compact oriented n-dimensional manifolds identified up to
cobordism then it becomes an additive group under disjoint union.

Theorem. (Ωn,+) is a finite group for n 6≡ 4 and is a finitely generated rank P(n/4) group when
n ≡ 4.

SKETCH PROOF? This is highly non-trivial it is the final chapter of the book. Note that the
torsion part is not classified by this theorem when n ≡ 4. We are being circular in stating these
theorems first, however conceptually it is clearer.

This additive group is also a graded ring under cartesian product. We denote this graded ring Ω∗.

Lemma. If a 4k manifold is a boundary then all of its Pontryagin numbers are zero.

SKETCH PROOF? In particular we have for any partition I a group homomorphism

Ω4k → Z

M 7→ pI(M)

or equivilently we have a homomorphism

Ω4k → ZP(k)

M 7→ (pI(M))I

That is a Z -module homomorphism from a rank P(k) module to a rank P(k) module, which can be
represented as a matrix. Because we want to disregard the torsion factors we may as well start talking
about Ω∗ ⊗ Q and so this gives us a linear map between vector spaces of the same dimension. In
particular it can be represented by a matrix.

Given some manifolds K1, ...,Kn (of dimension n or 4n) then under some mild hypothesis the Sort
out the hypothesis.P(n)× P(n) matrix (the number of partitions of n)[

ci1 · · · cir [Kj1 ×Kjs ]
]

where i1, ..., ir and j1, ..., js range over all partitions of n is non-singular.SKETCH PROOF? In par-
ticular the theorem is satisfied by the complex projective spaces. Indeed we can see that the columns
of our two matrices in the computations above are in fact linearly independent (and that they are the
relevant matrices).

This matrix is exactly the Q module homomorphism Ω4k ⊗ Q → QP(k) given by picking a some
elements on the left, namely all the different products of the sequence of K1, ...,Kn, and this statement
says that it is a surjection. But a surjection between two vector spaces of the same dimension is an
isomorphism. Thus it shows that these products actually form a basis as a Q vector space for the
cobordism group in the relevant dimension. In particular products of (even dimensional) complex
projective spaces form such a basis.
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5 Signature
Let M be a compact, oriented 4k manifold with fundamental class µ. Then the cohomology over a
field, say Q , in the middle dimension has a bilinear form by linearly extending

H2k(M ;Q)⊗H2k(M ;Q) → Q

(a, b) 7→ (a ^ b)(µ)

the evalutation of their cup on the fundamental class as before. It is well known that this is a non-
singular form ([Hat02, Prop 3.38]. The dimension being a multiple of 4 ensures that this form is
symmetric. Together these imply that this form is represented by an invertible diagonalisable matrix.
The signature of the manifold is then given by the signature of the quadratic form, or explicitly

σ(M) ..= # of positive diag entries − # of negative diag entries

or equivilently the number of positive minus the number of negative eigenvalues of the form.
This has the key properties

1) This is an invariant of the space. This is clear because the cohomology ring and fundamental class
are invariants of the space.

2) (Sums)
σ(M tM ′) = σ(M) + σ(M ′)

We have field coefficients as we can see the homology of a disjoint union is the direct sum of the
homologies (Mayer-Vietoris), which therefore also applies to cohomology. Therefore the matrix we are
diagonalising is the direct sum of the two matricies and so the signature will add.

3) (Products)
σ(M ×M ′) = σ(M)σ(M ′)

The Kunneth isomorphism gives us the following commuting diagram

H∗(M)⊗H∗(M)⊗H∗(M ′)⊗H∗(M ′) Q

H∗(M ×M ′)⊗H∗(M ×M ′) Q

(−^−)[M ]·(−^−)[M ′]

(−^−)[M×M ′]

where we have used the maps

Hn(M) → Hom(Hn(M),Q) → Hn(M)

α 7→
(
α 7→ 1

)
7→ [

(
α 7→ 1

)
]
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which are all isomorphis and then moved the fundamental class around this diagram

Hn(M ×M ′) Hn(M)⊗Hn(M ′)

Hn(M ×M ′) Hn(M)⊗Hn(M
′)

∼

∼ ∼

∼

Im still not totally clear on how to show that this diagram commutes formally

4) If M is oriented, or if we choose the opposite fundamental class then we have the relation

σ(M) = −σ(−M)

this is clear.

5) If M is a boundary then σ(M) = 0.

We will use Poincare duality as well as a linear algebra lemma:

Lemma. If λ : V × V → Q is a non-singular symmetric bilinear form and the rank of V is 2`, then
if there exists an ` dimensional subspace L ≤ V such that λ|L×L = 0 then σλ = 0.

Such a subspace is called a Lagrangian of the bilinear form. Clearly the hypothesis on the form are
fullfilled for our pairing so what we need to show is that if M4k = ∂X then there is a Lagrangian of
H2k(M). Consider the LES in cohomology

· · · → H2k(X,M) → H2k(X)
i∗−→ H2k(M) → · · ·

where i : M → X the inclusion. We claim that Im(i∗) is a Lagrangian for the relevant pairing that we
now denote λ. First we need the form to vanish. Consider the commuting diagram

H2k(X)⊗H2k(X) H4k(X)

H4k(M)

H2k(M)⊗H2k(M) Q

^

i∗⊗i∗

i∗

ev[M]

λ

this commutes because of natrality

(a ^ b) ◦ i∗ = ai∗ ^ bi∗.

The right hand vertical is zero however since I feel like it should be because we are evaluating an X
class on the fundamental class of M and X is 4k+1 dimensional. Clarify...

Now we show that this image has the correct dimension, namely 1
2H

2k(M). We compare the LES
in homology with that in cohomology using Poincare duality for manifolds with boundary which gives
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us iso’s in every place

H2k(W,M) H2k(W ) H2k(M) H2k+1(W,M) H2k+1(W )

∼ = ∼ = ∼ =

H2k(W ) H2k+1(W,M) H2k(M) H2k(W ) H2k−1(W,M)

i∗ j∗

i∗

Because we are in the category of vector spaces we know that

H2k(M) ∼= Im(j∗)⊕ ker(j∗) ∼= Im(j∗)⊕ Im(i∗)

by rank nullity and exactness. Thus it is sufficient to show that the Im(i∗) = Im(j∗) as then the
dimension of H2k would be 2Im(i∗) as required. Using our Poincare duality diagram (particularly its
commutativity) however we get that

Im(j∗) ∼= Im(i∗) ∼= Im(i∗)
∗ ∼= Im(i∗)

recalling that vector spaces are isomorphic to their duals and applying universal coefficients for the
final iso.

In particular the signature is a cobordism invariant. Thus it gives a ring homomorphism

σ : Ω∗ → Z

Thus we have shown that

Theorem (Signature Theorem, [MS16], Thm 19.4). The signature of a manifold is a linear combina-
tion of the Pontryagin numbers.

This is clear becuase we essentially showed that the Pontryagin numbers give an isomorphism from

Ω4k ⊗Q → QP(k)

thus any group homomorphism from Ω4k → Q (namely signature) will factor through this isomorphism.

Remark: The full power of this theorem is that it gives an exact formula in terms of the tanh of the
Pontryagin numbers. We will see this later.

5.1 Example
Lets compute the signature directly for low dimensional complex projective spaces.

Now we can use our Pontryagin number computations from earlier to find which linear combination
of them gives us the signature.

Now for instance if we have another 8 manifold and we know two out of three of signature, p1 or
p2 then we can sometimes sub it into these linear relations and find the third. For example HP 2 the
quarturnionic projective space we are told that σ = 1 and p1 = ±2α for a generator α in H4. Then
using that p2 = dα2 we can solve for d = 7 to get the second Pontryagin class. Note that we used
a lot of facts. A priori we didnt have two out of the three, we had to use the duality of α2 and the
fundamental class as well to get the pontryagin number of p21 and then leverage this to get the number
for p2 and then the coefficient for p2 in terms of p1.
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6 Genera
The study of genera is going to unify topology and complex analysis and through complex analysis we
also get all the connections with number theory.

6.1 Multiplicative Sequences
Throughout we will use R as a fixed commutative unital ring. A∗ is a (strictly / classically) commu-
tative graded R algebra. One should think of Q and H∗. To A∗ we associate the commutative ring of
sequences (power series) (a0, ..., an, ...) ∈ AΠ with power series multiplication. We call a sequence of
homogeneous polynomials with coefficients in R

K1(x1),K2(x1, x2), · · ·

where Kn is homogeneous (terms have the same degree) of degree n, multiplicative if for all A∗, graded
R algebras and all a, b ∈ AΠ, a0 = b0 = 1 denoting

K(a) ..= 1 +K1(a1) +K2

(
a1, a2

)
+ · · ·

we have that
K(ab) = K(a)K(b).

Remark: Homogeneous here means weighted homogeneous, that is the terms in say Kn(x1, ..., xn)
should all have the same degree, where degree is calculated by

Deg =
∑
i

i · exponent(xi)

eg. the degree of x3 is 3, which is the same as the degree of x1x2.

Hirzebruch classified these sequences by showing that they are in one-one correspondence with power
series.

Theorem. If f is a formal power series with coefficients in R and constant term 1 then there exists
a unique multiplicative sequence {Kn} with R coefficients satisfying

f(t) = K(1 + t)

Note that we are considering 1 + t as an element of the graded R algebra R[t] or as an element of
R[t]Π. This multiplicative sequence we call the multiplicative sequence belonging to the power series.
It has two properties

• If f(t) = 1+
∑

i λit
i then Kn is the associated multiplicative sequence iff the coefficient of xn

1 in
Kn is λn.

• If Kn comes from f then for any a1 ∈ A1 ⊆ A∗ degree one element of any graded R algebra we
have the identity

K(1 + a1) = f(a1)

Example. //

Remark: First of all it is clear that K(1 + t) is a power series, the uniqueness claim in the theorem
shows that if two multiplicative sequences agree as power series

K(1 + t) = K ′(1 + t)

then the multiplicative sequences are equal. This shows the injection in the other direction.
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6.2 Proof Sketch
the correspondence is given by

1 +
∑
i

λit
i 7→ Kn....notclear

the way they define it is not so clear, why are they defining it on a basis of the symetric functions? Well
the wikipedia on genus of multiplicative sequence says something about how to do this, regardless it
seems that the definition is not so straight forward; it is trying to basically just take all the combinations
of suitable degree of the coefficients of the power series.

This is key to understanding how Hirzebruch would come up with the multiplicative sequence for
the signature.

6.3 Genus
Now to a smooth compact oriented 4n-dimensional manifold M and a multiplicative sequence {Kn}
over the rationals we call the K genus of M

Kn[M ] ..= Kn(p1, ..., pn)[M ]

where pi are the Pontryagin classes of the tangent bundle of M. Notice that Kn is a polynomial and
that each of the summands has the same degree, if we evaluated any one of the summands of Kn then
we would get simply a Pontryagin number. Here however we are taking Q linear combinations of such
things.

Lemma. Given a multiplicative sequence Kn over Q there is an algebra homomorphism

Ω∗ ⊗Q → Q

M4n 7→ Kn[M ]

Proof. Because it is a linear combination of Pontryagin numbers linearity is clear (module homo-
morphism). Thus all we need to check is that it respects products. When proving the Whitney
product formula for Stieffel-Whitney classes the first step is to compute the Stieffel-Whitney class
for the cartesian product and then find the formula for the Whitney sum. Something similar but
less straight forward is done for Chern classes, thus we still need a more thorough analysis of the
Pontryagin (Chern) classes of a Cartesian product.

The claim is that just like for the Whitney sum we have that

p(M ×M ′) ≡ p(M)× p(M ′) (mod 2)

that is modulo elements of order 2 in the cohomology ring. I dont think they supply a proof of this
maybe its an easy argument similar to the Whitney sum one?. Then mod 2 we have

Kn+n′(p(M ×M ′)) ≡ Kn(p(M))×Kn′(p(M ′))

Thus rationally we have the classes are equal (in Q coefficient cohomology) and so we conclude that

Kn+n′(p(M ×M ′))[M ×M ′] = Kn(p(M))[M ] ·Kn′(p(M ′))[M ′] ∈ Q (1)

Remark: Milnor-Stasheff says something a bit different; they say that

K(p× p′)[M ×M ′] = (−1)mm′
K(p)[M ]K(p′)[M ′]

both Diarmuid and I were confused by the sign conventions being used here. Regardless the power is
even and so the proof still goes through.
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Remark: Notice we used multiplicative property of K in equation 1.

Remark: By convention if the manifold does not have dimension 4k its signature and K genus are
defined to be 0.

6.4 Back to Signature
We have already seen that the signature is a rational linear combination of the Pontryagin numbers,
the claim is now that this linear combination arrises from a multiplicative sequence.

Theorem (Signature Theorem (Again)). The signature is the L genus for the multiplicative sequence
corresponding to the Taylor expansion of

√
t

tanh
√
t
= 1 +

∞∑
k=1

(
− 1

)k−1
22kBkt

k

2k!

Note that Bk are the Bernoilli numbers with some convention choices. Namely Milnor-Stasheff
have defined them to be the coefficients appearing in this expansion of x/ tanhx. Note also that this
is a property of the signature, thus any manifolds signature will be the same linear combination of its
Pontryagin numbers, it is however the Pontryagin numbers that will change.

Unpacking this a bit more what do we really get. We get that the signature as a map Ω∗ ⊗
Q → Q factors through the pieces Ω4n ⊗ Q → Q and on each of these peices the signature is a
homogeneous polynomial in the Pontryagin classes (evaluated on the fundamental class) or that it
is a linear combination of Pontryagin numbers, where the linear combination is independent of the
manifold. In particular the linear combination is fixed by some power series. Calculating the L
polynomials is in principle possible to do purely combinatorially if you know the coefficients of the
power series (which we do), in particular there are explicit and recursive formulas for the Bernoulli
numbers.

Proof. We are trying to show two algebra homomorphisms agree and so it suffices to check they
agree on a set of generators. In particular we have shown that CP 2j generate the cobordism ring
rationally.

The signature of all of these spaces is 1 because H2j(CP 2j) is generated by α and α2[CP 2j ] = 1.
Thus as a 1× 1 matrix the bilinear form of cupping is just 1. Note that there is a sign convention for
the fundamental class, that also propegates to the L polynomials.

Now we just need to show that
L(CP 2j) = 1.

First recall the general formula (derived easily from that we computed for Chern classes) for Pon-
tryagin classes of the tangent space to CP 2j is given by

p = (1 + α2)2j+1

for the same α as above. By definition we have that

L(1 + α2) =

√
α2

tanh
√
α2

where the RHS is notation for the formal power series given by its Taylor series. By considering
1/ tanh = coth taking the standard power series for coth and multiplying by t we get that

√
t2

tanh
√
t2

=
t

tanh t
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so we may write
L(1 + α2) =

α

tanhα

By multiplicativity we get that

L(p) = L((1 + α2)2j+1)

= L(1 + α2)2j+1

=
( α

tanhα

)2j+1

=

[
1 +

∞∑
k=1

(
− 1

)k−1
22kBkα

2k

2k!

]2j+1

= 1 + L1(p1) + L2(p1, p2) + · · ·

CP 2j is real dimension 4j and so its relevant L genus will be Lj . Lj is a homogeneous polynomial of
degree j in the Pontryagin classes, thus lands in the cohomology of degree 4j. α above is a generator
for H2 and hence α2j ∈ H4j is a generator. Comparing coefficients and evaluating on a fundamental
class shows that Lj(p)[CP 2j ] is just the coefficient of α2j in the power series

(α/ tanhα)2j+1

What remains is to show that the coefficient of z2k in (z/ tanh z)2k+1 is one. We consider z to be
a complex variable. Then away from 0, where tanh(0) = 0 we have the ratio of holomorphic functions
and thus the function is holomorphic. tanh has a zero of order 1 at 0 and hence 1/ tanh has a pole
of order 1 at 0. Thus z/ tanh z is holomorphic at 0, that is to say entire. Its Taylor series at 0 is the
one we have been considering, or otherwise it is clear that it is holomorphic in an anulus around 0 and
hence has a Laurent series. Now by Laurents theorem or the definition of Laurent series we have that
for a complex function (around zero)

f(z) =
∑
n∈Z

anz
n

where an is given by the contour integral around 0 on a closed curve

an =
1

2πi

∮
f(z)

zn+1

thus for us the relevant coefficient is given by

a2k =
1

2πi

∮
z2k+1

z2k+1(tanh z)2k+1
=

1

2πi

∮
1

(tanh z)2k+1

Now its a complex analysis exercise. First we substitute u = tanh z, so z = arctanh(u) and

dz

du
=

1

1− u2

which by a geometric series is equal to

1

1− u2
=

∑
i≥0

u2i

Note that we can take our curve in a neighbourhood of 0 , since tanh(0) = 0 and so this formula
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applies. Thus the contour integral becomes

1

2πi

∮
1

(tanh z)2k+1
=

1

2πi

∮ ∑
i≥0 u

2i

u2k+1

=
1

2πi

∑
i≥0

∮
u2i−2k−1

=
1

2πi

∑
i≥0

2πiRes0u2i−2k−1

=
∑
i≥0

{
1, 2i− 2k − 1 = −1

0, else

= 1

(2)

where we assume that there is no problem with interchanging the sum but will not check seriously.
Recall that the residue of a holomorphic function is the coefficient of the U−1 term of its Laurent
expansion and that a polynomial is its own Laurent expansion.

Thus the L-genus given by
√
t/ tanh

√
t is constantly one on projective spaces and thus agrees with

the signature.

Remark: More enlightening would be the following exercise; how would we construct a power series
such that its multiplicative sequence always gives 1.
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